Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
iScience ; 26(2): 105928, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2165434

ABSTRACT

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

2.
Allergy ; 76(9): 2866-2881, 2021 09.
Article in English | MEDLINE | ID: covidwho-1289730

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and shows a broad clinical presentation ranging from asymptomatic infection to fatal disease. A very prominent feature associated with severe COVID-19 is T cell lymphopenia. However, homeostatic and functional properties of T cells are ill-defined in COVID-19. METHODS: We prospectively enrolled individuals with mild and severe COVID-19 into our multicenter cohort and performed a cross-sectional analysis of phenotypic and functional characteristics of T cells using 40-parameter mass cytometry, flow cytometry, targeted proteomics, and functional assays. RESULTS: Compared with mild disease, we observed strong perturbations of peripheral T cell homeostasis and function in severe COVID-19. Individuals with severe COVID-19 showed T cell lymphopenia and redistribution of T cell populations, including loss of naïve T cells, skewing toward CD4+ T follicular helper cells and cytotoxic CD4+ T cells, and expansion of activated and exhausted T cells. Extensive T cell apoptosis was particularly evident with severe disease and T cell lymphopenia, which in turn was accompanied by impaired T cell responses to several common viral antigens. Patients with severe disease showed elevated interleukin-7 and increased T cell proliferation. Furthermore, patients sampled at late time points after symptom onset had higher T cell counts and improved antiviral T cell responses. CONCLUSION: Our study suggests that severe COVID-19 is characterized by extensive T cell dysfunction and T cell apoptosis, which is associated with signs of homeostatic T cell proliferation and T cell recovery.


Subject(s)
COVID-19 , Cross-Sectional Studies , Homeostasis , Humans , Lymphocyte Activation , SARS-CoV-2
3.
Cell Rep Med ; 2(1): 100166, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-989408

ABSTRACT

Coronavirus disease 2019 (COVID-19) manifests with a range of severities, but immune signatures of mild and severe disease are still not fully understood. Here, we use mass cytometry and targeted proteomics to profile the innate immune response of patients with mild or severe COVID-19 and of healthy individuals. Sampling at different stages allows us to reconstruct a pseudo-temporal trajectory of the innate response. A surge of CD169+ monocytes associated with an IFN-γ+MCP-2+ signature rapidly follows symptom onset. At later stages, we observe a persistent inflammatory phenotype in patients with severe disease, dominated by high CCL3 and CCL4 abundance correlating with the re-appearance of CD16+ monocytes, whereas the response of mild COVID-19 patients normalizes. Our data provide insights into the dynamic nature of inflammatory responses in COVID-19 patients and identify sustained innate immune responses as a likely mechanism in severe patients, thus supporting the investigation of targeted interventions in severe COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate , Adult , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Female , Humans , Male , Mass Spectrometry , Middle Aged , Monocytes/cytology , Monocytes/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Proteomics/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sialic Acid Binding Ig-like Lectin 1/metabolism
4.
J Allergy Clin Immunol ; 147(2): 545-557.e9, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-939006

ABSTRACT

BACKGROUND: Whereas severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody tests are increasingly being used to estimate the prevalence of SARS-CoV-2 infection, the determinants of these antibody responses remain unclear. OBJECTIVES: Our aim was to evaluate systemic and mucosal antibody responses toward SARS-CoV-2 in mild versus severe coronavirus disease 2019 (COVID-19) cases. METHODS: Using immunoassays specific for SARS-CoV-2 spike proteins, we determined SARS-CoV-2-specific IgA and IgG in sera and mucosal fluids of 2 cohorts, including SARS-CoV-2 PCR-positive patients (n = 64) and PCR-positive and PCR-negtive health care workers (n = 109). RESULTS: SARS-CoV-2-specific serum IgA titers in patients with mild COVID-19 were often transiently positive, whereas serum IgG titers remained negative or became positive 12 to 14 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers after symptom onset. Very high titers of SARS-CoV-2-specific serum IgA were correlated with severe acute respiratory distress syndrome. Interestingly, some health care workers with negative SARS-CoV-2-specific serum antibody titers showed SARS-CoV-2-specific IgA in mucosal fluids with virus-neutralizing capacity in some cases. SARS-CoV-2-specific IgA titers in nasal fluids were inversely correlated with age. CONCLUSIONS: Systemic antibody production against SARS-CoV-2 develops mainly in patients with severe COVID-19, with very high IgA titers seen in patients with severe acute respiratory distress syndrome, whereas mild disease may be associated with transient production of SARS-CoV-2-specific antibodies but may stimulate mucosal SARS-CoV-2-specific IgA secretion.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mucous Membrane/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Saliva/immunology , Severity of Illness Index , Tears/immunology
6.
Journal of NeuroInterventional Surgery ; 12(7):1-42, 2020.
Article | CINAHL | ID: covidwho-616372

ABSTRACT

Background Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute illness termed coronavirus disease 2019 (COVID-19). Humoral immune responses likely play an important role in containing SARS-CoV-2, however, the determinants of SARS-CoV-2-specific antibody responses are unclear. Methods Using immunoassays specific for the SARS-CoV-2 spike protein, we determined SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in sera and mucosal fluids of two cohorts, including patients with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)-confirmed SARS-CoV-2 infection (n = 56;median age 61 years) with mild versus severe COVID-19, and SARS-CoV-2-exposed healthcare workers (n = 109;median age 36 years) with or without symptoms and tested negative or positive by RT-qPCR. Findings On average, SARS-CoV-2-specific serum IgA titers in mild COVID-19 cases became positive eight days after symptom onset and were often transient, whereas serum IgG levels remained negative or reached positive values 9--10 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers as a function of duration since symptom onset, independent of patient age and comorbidities. Very high levels of SARS-CoV-2-specific serum IgA correlated with severe acute respiratory distress syndrome (ARDS). Interestingly, some of the SARS-CoV-2-exposed healthcare workers with negative SARS-CoV-2-specific IgA and IgG serum titers had detectable SARS-CoV-2-specific IgA antibodies in their nasal fluids and tears. Moreover, SARS-CoV-2-specific IgA levels in nasal fluids of these healthcare workers were inversely correlated with patient age. Interpretation These data show that systemic IgA and IgG production against SARS-CoV-2 develops mainly in severe COVID-19, with very high IgA levels seen in patients with severe ARDS, whereas mild disease may be associated with transient serum titers of SARS-CoV-2-specific antibodies but stimulate mucosal SARS-CoV-2-specific IgA secretion. The findings suggest four grades of antibody responses dependent on COVID-19 severity.

SELECTION OF CITATIONS
SEARCH DETAIL